Early fetal hypoxia leads to growth restriction and myocardial thinning.

نویسندگان

  • Margie Ream
  • Alisa M Ray
  • Rashmi Chandra
  • Dona M Chikaraishi
چکیده

Hypoxia is necessary for fetal development; however, excess hypoxia is detrimental. Hypoxia has been extensively studied in the near-term fetus, but less is known about earlier fetal effects. The purpose of this study was to determine the window of vulnerability to severe hypoxia, what organ system(s) is most sensitive, and why hypoxic fetuses die. We induced hypoxia by reducing maternal-inspired O2 from 21% to 8%, which decreased fetal tissue oxygenation assessed by pimonidazole binding. The mouse fetus was most vulnerable in midgestation: 24 h of hypoxia killed 89% of embryonic day 13.5 (E13.5) fetuses, but only 5% of E11.5 and 51% of E17.5 fetuses. Sublethal hypoxia at E12.5 caused growth restriction, reducing fetal weight by 26% and protein by 45%. Hypoxia induced HIF-1 target genes, including vascular endothelial growth factor (Vegf), erythropoietin, glucose transporter-1 and insulin-like growth factor binding protein-1 (Igfbp-1), which has been implicated in human intrauterine growth restriction (IUGR). Hypoxia severely compromised the cardiovascular system. Signs of heart failure, including loss of yolk sac circulation, hemorrhage, and edema, were caused by 18-24 h of hypoxia. Hypoxia induced ventricular dilation and myocardial hypoplasia, decreasing ventricular tissue by 50% and proliferation by 21% in vivo and by 40% in isolated cultured hearts. Epicardial detachment was the first sign of hypoxic damage in the heart, although expression of epicardially derived mitogens, such as FGF2, FGF9, and Wnt9b was not reduced. We propose that hypoxia compromises the fetus through myocardial hypoplasia and reduced heart rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-46: Color Doppler Assessment in IUGR

Background Fetal growth restriction is the second leading cause of perinatal morbidity and mortality. The incidence of intrauterine growth restriction (IUGR) is estimated to be approximately 5 percent in the general obstetric population. Abnormal uterine artery suggest a maternal cause for the growth restriction where as normal uterine artery Doppler studies suggest that a fetal cause. Use of u...

متن کامل

Chronic hypoxia during development does not trigger pathologic remodeling of the chicken embryonic heart but reduces cardiomyocyte number.

Fetal growth restriction programs an increased risk of cardiovascular disease in adulthood, but the actual mechanisms of this developmental programming are not fully understood. Previous studies in mammalian models suggest that hearts of growth-restricted fetuses have reduced cardiomyocyte number due to reduced proliferation and premature cardiomyocyte maturation. Chicken embryos incubated unde...

متن کامل

I-46: Obstetrical Doppler

Accurate assessment of gestational age, fetal growth, and the detection of fetal and placental abnormalities are major benefits of sonography. Color Doppler can be used to assist in the identification of vascular architecture, detection of vascular pathology and visualization of blood flow changes associated with physiologic processes and disease states. The clinical applications of obstetrical...

متن کامل

Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model

Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete nar...

متن کامل

The usefulness of fetal Doppler evaluation in early versus late onset intrauterine growth restriction. Review of the literature.

Intrauterine growth restriction (IUGR) represents a serious condition that can lead to increased perinatal morbidity, mortality and postnatal impaired neurodevelopment. There are two distinct phenotypes of IUGR: early onset and late onset IUGR with different onset, patterns of evolution and fetal Doppler profile. In early onset preeclampsia the main Doppler modifications are at the level of umb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 295 2  شماره 

صفحات  -

تاریخ انتشار 2008